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Abstract

This paper investigates the extent to which extratropical synoptic eddies may be viewed as

stochastically forced disturbances evolving on a baroclinically stable planetary scale background

flow.  To this end, a two-level hemispheric quasi-geostrophic model is linearized about the

observed long-term mean flow and forced with Gaussian white noise.  The mean flow is shown to

be exponentially stable for a reasonable choice of dissipation parameters.  Synoptic-scale eddy

disturbances can still grow on such a flow, albeit for a finite time, either in response to the

stochastic forcing or through local energy interactions with the basic state.  In a statistically steady

state, a fluctuation dissipation relation (FDR) links the covariance structure of the eddies to the

spatial structure of the basic state and the covariance structure of the forcing.  If the forcing is

assumed to have a trivial statistical structure, i.e. white in both space and time, the FDR amounts to

an unambiguous one-to-one relationship between the spatial structure of the basic state and the

covariance structure of the eddies, and therefore constitutes a theory of the eddy statistics.  The

theory is complete in the sense that for any given background flow, it predicts all of the second-

order eddy statistics, such as eddy kinetic energy, momentum and heat fluxes, and spectra.  It is

also self-consistent in that it neither admits nor predicts higher order statistics.  Despite the drastic

assumptions  made, the comparisons of the predicted and observed geographical distributions of

eddy kinetic energy, momentum and heat fluxes are found to be extremely encouraging.  The

theory is also shown to be sensitive enough  to  basic state changes that it is able to capture

important aspects of observed storm track variability associated with seasonal and interannual

changes in the background flow.
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1.  Introduction.

The last two decades have seen considerable progress in the modeling and prediction of

extratropical weather systems. Numerical weather prediction models  are now able to forecast them

up to nearly a week ahead of time, and many general circulation models (GCMs) are able to capture

important aspects of their general behavior as represented in variance and covariance statistics.

Parallel advances have also been made in the understanding of their dynamics in a variety of

situations, aided in significant measure by "potential vorticity thinking".

Despite these advances, however, a successful theory of the statistics of such eddies has

yet to emerge. By itself, a reasonable simulation of the eddy statistics in GCMs does not constitute

such a theory. Without a theory one cannot understand why, for example, a GCM produces

synoptic eddy variance maxima where it does or why it does not produce variance maxima where it

should. A quantitative theory of the eddy statistics would help one understand such model

deficiencies. It would also help one understand better the geographical distributions of the

observed climatological mean synoptic eddy variances and fluxes, their changes from season to

season, from year to year, and during persistent extreme anomaly events.

A theory of the eddy statistics should link the statistics of the eddies to the structure of the

background flow. Synoptic eddies have almost always been discussed in relation to a background

flow, either steady, time-mean, slowly evolving, or representative of some 'instantaneous' weather

regime. When the focus shifts from the behavior of individual eddies to that of an ensemble of

eddies, consideration of the ensemble average flow as a background flow becomes even more

relevant. Nevertheless, as is well recognized, such a separation of the total flow into mean and

eddy parts often causes conceptual difficulties, and also raises the issue of to what extent the mean

flow actually determines the eddy statistics or vice versa. Regardless of cause and effect, however,

one can still always ask the question: Given an ensemble-average flow, to what extent can one

deduce the ensemble-average eddy statistics?  This is the problem considered in this paper.
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In this paper, the term 'synoptic eddy statistics' will be used to denote the covariance and

lag-covariance statistics of eddies with periods between 1 and 8 days. To fix ideas, consider the

evolution equation for such eddies in the form

    dx
dt

= L x + n + F, (1)

where x  is the vector of eddy expansion coefficients in say a spherical harmonic basis, L is a

linear operator in that basis,  n  denotes nonlinear terms and  F  represents forcing. We will

assume that (1) has been written in such a way that x  is a real vector and L is a real matrix. Note

that  Lx  includes eddy dissipation terms in addition to the terms linearized about a specified

background flow. Our aim in this paper is to relate the covariance matrices

   C0 = x(t)xT(t) , (2a)

    Cτ = x(t+τ)xT(t) (2b)

of the synoptic eddies, where angle brackets < > denote an ensemble average (which is often

estimated as a time average) to the structure of the background flow. To this end, we will

approximate the sum of the nonlinear and forcing terms in (1) as

   n + F = Dx + Fs, (3)

where    Fs   is Gaussian white noise. This represents a slight generalization of an approximation

often made in linear theories of classical turbulence in which the nonlinear terms are hypothesized

to have two major effects: equilibration and excitation.  Eq. (3) is only expected to hold on

average, not for every realization; one may think of it as a linear regression approximation. With

this approximation (1) becomes
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    dx
dt

= (L + D)x + Fs = Bx + Fs. (4)

We will specify D such that B is a stable operator, i.e. all its eigenvalues have negative real parts.

Equation (4) then becomes a multivariate linear Markov model of the synoptic eddies.

The general properties of a model such as (4) have been discussed recently in detail in other

geophysical contexts by DelSole and Farrell (1995), Penland and Sardeshmukh (1995) and

Newman, Sardeshmukh and Penland (1996; hereafter NSP). Its most important property is that

without forcing, all eddies eventually decay. In a multivariate system, however, that decay need

not be monotonic. If the maximum singular value of the operator exp(Bτ) is greater than 1 for

some τ, then eddy growth is possible over the interval [t, t+τ]. Nevertheless, to achieve a

statistically stationary state, the general decaying tendency of the eddies must be balanced by

forcing. This balance condition, known in the stochastic dynamical systems literature as a

fluctuation-dissipation relation (FDR; see Penland and Matrosova 1994) may be expressed as

    BC0 + C0B
T + Q = 0, (5)

where Q = 
   Fs(t)Fs

T(t) dt  is the covariance matrix of the stochastic white noise forcing.  Note

that Q is symmetric but not necessarily diagonal, i.e.   Fs  is white in time but not necessarily white

in space. Equation (5) links the covariance structure of the eddies,   C0 , to the structure of the

background flow, B, and to the structure of the forcing, Q. Given B and Q, therefore, one can

solve for   C0 . The lag-covariance matrices   Cτ  are related to   C0  in any dynamical system of the

form (4) as

   Cτ = exp (Bτ)C0 (τ > 0), (6)

and can therefore also be determined once   C0  is known.
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To simplify even further, we hypothesize that the geographical coherence of the forcing is

unimportant in (5), and approximate Q as Q = εI, where I is the identity matrix and ε is a scaling

constant. Our parameterization of the eddy statistics then becomes

     BC0 + C0B
T + εI = 0, and (7a)

   Cτ > 0 = exp (Bτ)C0, (7b)

    Cτ < 0 = Cτ > 0
T . (7c)

Given any background flow, i.e. B, we determine   C0 through (7a) and   Cτ  through (7b). Note

that (7a) implies that if the background flow changes, the eddy statistics change in such a way that

the symmetric part of    BC0 remains invariant. This is the essence of our parameterization. Note

that the prediction of a change in   C0  does not depend upon an explicit specification of Q. We only

need Q to predict the actual   C0 , and will show below that specifying Q = εI, works quite well.

If   xω  is the Fourier transform of the multivariate Markov process    x(t)  in (4), then its

covariance matrix in the frequency domain is

      Cω ≡ xωxω
T * = (ωI + iB)− 1 Q(ωI − iBT)− 1, (8)

where (T*) denotes complex-conjugate transpose.  The power spectra of all components of   xω , as

well as their cross-spectra, are given by (8).  Cω and Cτ form a Fourier transform pair,

    
Cτ = 1

2π Cωe−iωτdω
−∞

+ ∞

, (9a)

    
Cω = Cτeiωτdτ

−∞

+ ∞

. (9b)

Thus  the solution of (7), for all τ, yields not only complete information on the spatial structure of

the eddies, but their Fourier spectra as well.
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Some caveats are in order. The parameterization problem is meaningfully posed only for

ensembles that include a sufficiently large number of synoptic eddy events that their statistics can

be reliably defined. For ensemble averages defined as  time averages, this suggests that one should

probably consider averages  over at least one, and preferably many, 90-day seasons.  We will

consider the problems of deducing the 13-winter (DJF) average eddy statistics for 1982-95 given

the 13-winter average flow, the differences between the 13 year average eddy statistics for mid-

winter (January) and mid-spring (April) given the differences between the 13-year mean flows for

these months, and finally, the anomalous eddy statistics for individual winters, given the

anomalous flows for those winters. From sampling considerations alone, one would expect some

degradation in the answers to these problems as the sample size is reduced.

There is however another, and perhaps even more important, reason as to why one should

expect a degradation in the answers for smaller sample sizes. Any parameterization problem is well

posed only to the extent that there is a clear scale separation between the eddies and the mean flow,

i.e. a clear spectral gap. We define our synoptic eddies as eddies with timescales shorter than 8

days, and our mean flow as flow with timescales longer than 90 days.  It might therefore appear

that we have adequate scale separation. It is however important to bear in mind that there is actually

no spectral gap in the observations. The spectrum of the observed variability is predominantly red,

and eddies with timescales between 10 and 90 days may also be expected to affect the synoptic

eddy statistics. One could thus observe, in principle,  different 90-day mean eddy statistics

associated with the same 90-day mean flow. Since the intermediate timescale eddies are

unaccounted for in our analysis, they contribute in effect an unparameterizable portion to the

synoptic eddy covariances in our problem. One could reasonably expect this contribution to be

smaller for larger ensembles (such as climate means), particularly if it is a linear function of the

intermediate timescale eddies.  For individual winters, however, it could be relatively large, and

remains to be determined.

Our linear model L in (1) will be a two-level, hemispheric, linear balance model linearized

about representative observed zonally varying flows at 400 and 800 mb. We will specify D in (4)
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as a simple linear drag. The scaling constant ε in (7) will be chosen so that the eddy kinetic energy

obtained via (7) matches observations. Maps of the eddy streamfunction variance, kinetic energy,

vorticity and heat fluxes predicted by (7) will be compared with the corresponding observed

quantities.

To the extent that our parameterization of the eddy statistics is successful, one could claim

that on average , synoptic eddy evolution is governed by (4), where B is a stable linear operator.

This should not however necessarily be taken to imply that the atmosphere is baroclinically stable.

We claim only that B = L + D is stable, not L. As discussed above, D  could be viewed as a linear

approximation to the damping effects of quadratic nonlinearities. Nevertheless, it turns out that our

L operator, by itself,  is only marginally unstable for all of the background flows considered here,

so specifying D as a simple weak damping with a time scale of 10 days is enough to stabilize B.

This weak extra damping D is arguably within the range of uncertainty of the damping that should

ideally be specified in a two-level model. In any event, the implication is that one need not invoke

normal mode baroclinic instability to explain most features of the second-order statistics of

observed synoptic systems.  Predictions of individual realizations, i.e. individual weather

forecasts, are another matter, although even here it will be shown that (4) performs much better

than persistence over 5 days and has comparable skill to that of current operational model forecasts

over 2 days.

Finally, we stress again that even if B is a stable operator, this does not imply that all eddy

growth is associated with the stochastic forcing. As mentioned above, if exp(Bτ) has singular

values greater than 1, as is true in our system, then eddy growth is possible over any interval

[t,t+τ]. Note that the energy for this growth comes from the background flow, not the forcing.

Indeed we will make a case that nearly 75% of the domain integrated eddy variance in the

statistically equilibrated system (4) comes from the background flow, and only about 25% from the

stochastic forcing.   Locally, in the jet regions where the energy source associated with shears in

the background flow is strongest, the relative importance of the energy source associated with the

stochastic driving is even less.
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The paper is organized as follows. Section 2 describes the observational datasets and data

filtering procedures, the two-level model equations, and the procedure for solving (7) for   C0  and

  Cτ . Results for the climatological mean winter eddy statistics are presented in section 3. The

simulations of the seasonal and interannual variations of the statistics are presented in section

4. Sensitivity of the results to the specification of the extra damping D in (4) is discussed in section

5. Section 5 also considers the sensitivity of the results to the norm in which Q is approximated as

εI  (i.e whether all spatial scales of streamfunction, kinetic energy or vorticity are excited equally

by the stochastic forcing).  Finally, section 6 follows with a discussion and conclusions.

2.  Data, equations and solution procedure.

2.1 Observational data and processing.

The data used in this study were derived from the National Centers for Environmental

Prediction (NCEP) reanalysis dataset (Kalnay et al, 1996).  We utilize global 400, 700, and 850

mb wind fields sampled four times daily for the period 1982-1995.  Winds at the 800 mb level

were estimated by linear interpolation in the natural logarithm of pressure between 700 and 850

mb. Spherical harmonic coefficients of the 400 and 800 mb angular velocity (winds multiplied by

cosine of latitude) were then calculated from the 2.5o gridded data using the SPHEREPACK1

package (Swartztrauber, 1984), and these coefficients were truncated to T31 resolution. Only the

nondivergent winds were used in the analysis; these were obtained from the spectral coefficients of

the vorticity field. High frequency filtered data were obtained by applying a 251 point 1-8 day

bandpass Lanczos filter to the 400 and 800 mb streamfunction coefficient time series.

2.2 The two-level model.

1FORTRAN source code available free from the National Center for Atmospheric Research (NCAR) via anonymous
ftp (ftp.ucar.edu).
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We use a quasi-geostrophic two-level model based on the linear balance equation (Lorenz

1960, Frederiksen 1983, often referred to as the "P-model").  After nondimensionalizing using the

radius of the earth (a ) as a length scale and the inverse of the earth's rotation rate (Ω-1) as a time

scale, the governing equations may be written;

   ∂
∂t

∇2ψj + J(ψj, ∇2ψj + 2µ) + ∇ ⋅ 2µ∇χj = − (2 −j)rM + υ∇4 ∇2ψj,   (10)

   ∂
∂t

(φ2 − φ1) + 1
2 J(ψ2 + ψ1, φ2 − φ1) + σω3 / 2 = − rT + υ∇4 (φ2 − φ1), (11)

  ∇2(φ2 − φ1) = ∇ ⋅ 2µ∇ (ψ2 − ψ1), (12)

where    J(A,B) ≡ ∂A
∂µ

∂B
∂λ − ∂B

∂µ
∂A
∂λ , ψ is streamfunction, φ is geopotential, χ is velocity potential,

µ is the sine of latitude,    ω ≡ dp
dt

dp
dt , and (rM, rT,  υ) are damping parameters.  The subscript j=1(2)

denotes the 800 mb (400 mb) level, while the subscript 3/2 denotes the 600 mb level.  The

variables ψ, χ, φ and ω are nondimensionalized by Ωa2, (Ωa)2, (Ωa)2 and Ω∆p, respectively,

where ∆p = p2 - p1 = -400 mb.  The static stability parameter σ is assumed to be a constant, given

by

   σ ≡ −∆π∆Θ
Ω2a2

(13)

where ∆π  is the difference between the Exner function (    ≡ cp(p p0
p p0)

RCp
RCp ) at 400 and 800 mb and ∆Θ

is the mean potential temperature difference between 400 and 800 mb.  For all of the results

presented here, the dimensional values of the lower level Rayleigh damping (rM), the thermal

damping (rT) and the coefficient of the biharmonic diffusion (υ)  are fixed at 2/5 d-1,  1/7 d-1 and

2.338 x 1016 m4s-1, respectively.  The static stability parameter is fixed by specifying ∆Θ = 15 K.

The horizontal boundary conditions are
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   ω5 / 2 = 0 and ω1 / 2 = J(ψ1, h), (14)

where h is topographic height (scaled by 
  

ρog
∆p

ρog
∆p , where ρo is a reference value of density at 1000

mb) and the subscript 1/2 (5/2) denotes the 1000 mb (200 mb) level.  The velocity potential χ is

related to ω through the continuity equation

   ∇2χj = (2j − 3)ω3 / 2 + (2 − j)ω1 / 2 (15)

The vorticity equation (10) is the prognostic equation for the model.  Since geopotential and

streamfunction are coupled through the balance equation (12), elimination of the time derivatives in

(10) and (11) using ∂/∂t of (12) yields a diagnostic "ω-equation" for the divergent flow (not

shown).

2.3  Calculation of eddy statistics.

The linearized version of the two-level model described above may be used to construct L ,

the matrix representing the linearized dynamical operator. Here we use the observed nondivergent

seasonally averaged flow at 400 and 800 mb to determine the basic state, while the static stability σ

and the damping coefficients (rM, rT,  υ) are fixed to the values given previously.

The operator D  in (4) is chosen to be a linear damping on the state variables (so that it may be

incorporated into the model without changing the eigenvectors or the imaginary parts of the

eigenvalues of L) by simply shifting the real parts of the eigenvalues by an amount equal to the

damping rate.  Unless otherwise noted, this damping rate is set to 1/10 days-1, which is more than

sufficient to stabilize L+D  for observed long-term seasonal mean basic states.  Further discussion

of the sensitivity of our results to D is given in section 5.

 Approximating   Fs  in (4) as geographically incoherent white noise yields (7), our model of

the eddy statistics.  The stochastic term represents the combined effects of eddy excitation due to
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random fluctuations in the nonlinear  interactions and forcing. As discussed in the introduction, our

view is that to the extent that our parameterization (7) is useful, the eddy dynamics must be

primarily governed by L, and not be very sensitive to the exact form of   Fs .  From this

perspective, the role of   Fs  is simply to provide some eddy  excitation.  The horizontal and vertical

shears in the basic flow then act to control the spatial structure and propagation characteristics of

the eddies.  

To the extent that; 1) L is a good model for the linear dynamical evolution of high-frequency

transients, 2) nonlinearity and forcing play secondary roles in governing the statistics of the eddies

and hence may be crudely approximated as white noise plus a linear damping, and 3)  and L+D  =

B is stable, equations (7) represent a complete theory for the statistics of storm track eddies.  The

theory is complete in the sense that once B is defined, all of the second order statistics of the

eddies, as well as their Fourier spectra, are known from (7) and (9).

2d.  Solution procedure.

The spherical harmonic expansion of the state variable is truncated at T31, yielding a 2048

element real state vector in (4).  To further reduce the dimensionality, we reflect the Northern

Hemisphere basic state onto the Southern Hemisphere, and also impose hemispheric symmetry on

the eddies.  This results in an L of rank 992.  To prevent the development of spurious equatorially

trapped disturbances, an equatorial sponge zone with a cos48 latitudinal dependence and a decay

time scale of 5 days at the equator is included in L.  The FDR (7a) is most easily solved for C0 in

the eigenspace of B (Penland and Sardeshmukh, 1995), and then transformed back to the spherical

harmonic space.  Cτ is then calculated from (7b) using the fact that     exp (Bτ) = EΛE− 1, where E is

the matrix with the eigenvectors of B  as columns, λ are the eigenvalues of B, and Λ is a diagonal

matrix with elements exp(λjτ).  Finally, the diagonal elements of C0 and Cτ (the variance and lag-

covariance maps)  are transformed from spectral to grid space for display.
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3.  Results for the winter mean background flow.

Using the 13 year winter (December - February) mean winds to compute L, we solve the FDR

with the parameter settings given in section 2.  Our state variable x  contains the spherical harmonic

expansion coefficients for perturbation streamfunction, so C0 represents streamfunction variance.

The assumption Q = εI  therefore amounts to the assumption that all the spherical harmonic

coefficients of streamfunction are excited equally, and independently, by our stochastic forcing

  Fs .  In general, the solution C0 of the FDR (7a) will depend upon the norm in which Q is

assumed to be white.  Unless noted otherwise, all of the results shown in this paper use Q = εI  in

the streamfunction norm.  Sensitivity of the solution to the choice of norm is discussed further in

section 5.

Figs. 1a and 1b show the observed and predicted 400 mb DJF high-frequency streamfunction

variance, respectively.  The scaling constant ε in (7a) has been chosen so that the maximum 400

mb eddy kinetic energy of the solution matches observations (see Fig. 2).    It is clear that the

simple theory (7) is able to capture the most important features of the observed distribution, the

Atlantic and Pacific storm tracks. The main deficiencies appear to be that the simulated Atlantic

storm track is too far north, and too little eddy activity penetrates the mean ridge in the eastern

Pacific.  

The relative contributions to C0 from barotropic and baroclinic energy interactions with the

basic state can be estimated by contrasting Fig. 1b with Fig. 1c, which is the result of a calculation

in which only the barotropic part of the observed DJF winds were used to compute L.   Since there

are no basic state temperature gradients in the latter calculation, the eddy variance is maintained

solely by the stochastic forcing and barotropic energy conversions.  The domain integrated

streamfunction variance is about 37% of that in Fig. 1b, indicating that baroclinic energy

conversions play a dominant role in maintaining eddy variance in our stochastically forced,

baroclinically stable model.  However, the barotropic calculation still yields localized regions of

eddy variance in the Atlantic and Pacific, although the dynamics of eddy growth supporting these
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"storm tracks" are clearly different from those in the full baroclinic calculation.  When the zonally

varying component of the barotropic basic flow is removed, the eddy variance is reduced even

further (Fig. 1d), indicating that the barotropic energy source for the eddy variance in Fig. 1c is

associated primarily with the zonally varying part of the barotropic deformation field.  When only

the solid body rotation component of the barotropic zonal wind is retained in the basic state, the

domain integral of streamfunction variance (not shown) is reduced to about 27% of the full

baroclinic case (Fig. 1b).  For this extreme distortion of L, there are no barotropic or baroclinic

sources of energy for the eddies, and the variance is maintained solely by the stochastic forcing.

This implies that the about 73% of the total eddy variance in the full baroclinic calculation (Fig. 1b)

is associated with energetic interactions with the mean flow, and is not forced directly by   Fs .

If y =Mx , then the zero lag covariance matrix of y  is MC0MT, and its diagonal elements

displayed in grid space constitute a variance map of y .  Fig. 2 shows the observed and predicted

eddy kinetic energy at 400 mb determined in this manner.  Again, the Atlantic and Pacific storm

tracks, defined now in terms of eddy kinetic energy instead of streamfunction variance, are quite

well simulated by the model.  Note that both the simulated and the observed Atlantic storm tracks

are stronger than their Pacific counterparts, suggesting that at least some of the dynamics

associated with the "midwinter suppression" of eddy activity in the Pacific noted by Nakamura

(1992) are being captured by the model.  We will return to this point  in section 4.1.

 In addition to producing realistic looking variance maps, our theory (7) can also reproduce the

observed heat and momentum fluxes, lag covariances and one-point lag correlation maps quite

well, as we will  now demonstrate.

3.3 Simulated eddy fluxes of heat and momentum.

Transports of heat and momentum by subweekly time scale eddies play an important role in

maintaining the observed time mean flow (Hoskins et al 1983; Lau and Holopainen 1984, Valdes

and Hoskins, 1989) as well as large scale, persistent flow anomalies (e. g. Green 1977,  Kok and
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Opsteegh 1985, Hoskins and Sardeshmukh 1987, Held et al 1989, Nakamura and Wallace 1990).

Although nonlinear feedbacks between high-frequency eddies and the low-frequency flow make it

difficult to establish causal relationships, it would still useful to know what changes in the storm

tracks (including the attendant fluxes of heat and momentum) could be expected to accompany a

change in the quasi-stationary large scale flow.  Furthermore, if a method were available to predict

such changes, it could be used as a basis for parameterizing the effects of high-frequency eddies in

a model of low-frequency atmospheric variability.  Most previous efforts in this direction have

utilized the fastest growing normal modes of the background flow as a basis for estimating changes

in eddy fluxes (Frederiksen 1983, Robertson and Metz 1989; 1990). One exception is the work of

Branstator (1995), who used an ensemble of short (5 day) integrations from random initial

conditions, using a linearized GCM, to simulate changes in eddy fluxes accompanying low

frequency flow anomalies in a long run of the same GCM.   Our goal is to construct a model of

synoptic eddy fluxes that not only serves as a parameterization, but  also forms the basis of a self-

consistent  theory  for those fluxes.

To assess the feedback of the high-frequency eddies on the time mean flow, we use the two-

level model equations to determine streamfunction tendencies associated with eddy fluxes of

vorticity and temperature.  The model's time mean vorticity equation may be written

   ∂
∂t

∇2ψj + J(ψj, ∇2ψj + 2µ) + ∇ ⋅ 2µ∇χj
mean = − (2−j)rM + υ∇4 ∇2ψj − J(ψj

', ∇2ψj
') − ∇ ⋅ 2µ∇χj

eddy, (16)

where overbars represent a long time mean and primes indicate eddies.  The quantities   χj

eddy and

  χj

mean are obtained by solving the QG "ω−equation" forced by transient eddy fluxes and mean

advections, respectively. The mean streamfunction tendency associated with the synoptic-eddy

vorticity fluxes contains a part associated with the second term on the right hand side of (16), as

well as a contribution associated with the differences between the synoptic-eddy vorticity fluxes at

400 and 800 mb, which enters through   χj

eddy. These two components can be thought of as the

barotropic and baroclinic components of the vorticity flux forcing, respectively. The contribution to
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the mean streamfunction tendency associated with transient eddy heat fluxes only enters through

  χj

eddy.

Fig. 3 shows the streamfunction tendency associated with synoptic-eddy vorticity fluxes,

obtained in this manner, from both observations and from the solution of the FDR (7a). As before,

the free parameter ε is chosen so that the maximum 400 mb eddy kinetic energy produced by the

FDR matches observations.  The model captures the general tendency for storm track eddy fluxes

of momentum to accelerate the Pacific and Atlantic jets, although the values are about twice as large

as observed.

 The simulated streamfunction tendency associated with synoptic-eddy heat fluxes matches

observations very well in both position and magnitude (Fig. 4). The only deficiency is the

tendency for the simulated heat fluxes to be too strong in the Atlantic storm track. Our model

appears to correct the problem noted by both Branstator (1995) and Frederiksen (1983), that is,

when the eddy amplitudes are scaled so that the simulated momentum fluxes match observations,

the heat fluxes are much too large.   In fact, our theory appears to have the opposite problem, i.e.

the simulated momentum fluxes are too large when the heat fluxes match observations.  At this

time we do not have an explanation for this behavior.

3.4. Lag covariances and propagation characteristics.

NSP examined whether the FDR for a barotropic model linearized about the observed 200 mb

flow could account for the observed statistics of low-frequency flow anomalies in the atmosphere.

They found that although the model could be tuned to produce fairly realistic simultaneous

covariances, the corresponding lag-covariances did not match observations very well.  Here we

examine whether a baroclinic stochastic model with forcing that is white in both space and time (in

the streamfunction norm) can produce lag-covariances and one point lag correlation maps similar to

those observed.  This is a fairly demanding test, since we are essentially asking the model to
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reproduce the observed frequency power spectra and propagation characteristics of high-frequency

transients.

Figure 5 shows the 1.5 day lag streamfunction covariance computed from observed high

frequency transients and the FDR (7). Both the observed and simulated lag covariances are

predominately negative, with patterns similar to the simultaneous covariances but with less

amplitude.  The simulated lag covariance is somewhat weaker (stronger) than observed in the

Pacific (Atlantic) storm track. Results for other lags produce similar agreement between model and

observations.  Since the observations are subjected to a eight day highpass filter, the lag covariance

falls of to zero at about five days.  The five day lag covariance computed from the model solution,

is small but nonzero, indicating that some low-frequency motions are excited by the white noise

forcing.  The contribution of these low-frequency motions to the eddy statistics shown here is

negligible.

One-point lag-correlation maps are often used to illustrate the statistical structure and evolution

of high-frequency disturbances (see e. g. Wallace et al 1988).  Figure 6 shows one-point lag-

correlation maps of both observed and simulated 400 mb streamfunction for lags  -2, 0 and +2

days for a base point near the entrance of the Pacific storm track.  The one-point lag-correlation

maps for the simulated high-frequency transients are a particular row (column) of Cτ for negative

(positive) τ, transformed to grid space, and normalized by the corresponding diagonal element of

C0.  There is a good correspondence between the observed and simulated correlation maps,

indicating that the structure and propagation characteristics of the high-frequency transients are well

simulated in the Pacific storm track.  The downstream energy propagation of eddy energy  in the

Pacific jet is slightly faster than observed, which  may account for the fact that the simulated lag

covariances are too weak (Fig. 5).  Also, the horizontal tilts of the simulated eddies in the Pacific

jet are too strong, consistent with the unrealistically large simulated momentum fluxes noted in the

previous section.

The lag-correlation maps for a base point at the beginning of the Atlantic storm track are

shown in Fig. 7.  Here discrepancies between simulated and observed eddies are more apparent.
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particularly for the +2 day correlations.  The zonal scale of the simulated eddies is somewhat too

short, the +2 day correlation is too large, and the eddies tend to propagate too far north and east,

compared to the observed eddies.

3.5. Eddy growth characteristics.

Since there is no exponential instability in our model, the simulated storm track eddies must

either be directly forced by the stochastic forcing, or grow through transient energetic interactions

with the mean flow.  Some indication of the relative roles of these processes is given in Fig. 1 and

the accompanying discussion.  Here we examine this issue in greater detail.

Since the simulated eddy variance is much larger when barotropic and baroclinic energy

sources are included in the basic state (Fig. 1), and the solution variance is spatially localized while

the forcing is not, energetic interactions with the mean state are clearly important.  The maximum

amplification (MA) curve (Penland and Sardeshmukh 1995, Borges and Sardeshmukh 1995) is a

succinct way of summarizing the behavior of linear perturbations to a given mean flow.  It

quantifies the maximum growth possible over a given time interval in the absence of forcing.

Figure 8 shows the MA curve for the 13 winter mean flow, i.e. the maximum singular values of

G(τ)  as a function ofτ, together with the linear evolution of selected optimal linear perturbations,

whose initial structure is given by the corresponding right singular of G.  Peak amplifications are

about twelvefold and are achieved at about 3.5 days.  The evolving perturbations have essentially

reached normal mode form by 15 days.  As in the barotropic case analyzed by Borges and

Sardeshmukh (1995), perturbations optimized for short time intervals are highly suboptimal for

longer time intervals. However, as highlighted in Fig. 1, in our model perturbations grow

primarily through baroclinic energy conversions, although barotropic energy conversions do

contribute, particularly for short optimization intervals.

The MA curve merely reveals the possibility of growth over a given time interval. Whether

this growth is actually achieved in the stochastically forced system (6) depends upon whether the
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state vector has a significant projection onto the subspace of growing optimal perturbations at any

given time (Sardeshmukh et al, 1996), and whether the white noise forcing interferes strongly with

the free evolution of those growing perturbations.  If one considers the free linear evolution of an

initial distribution of perturbations that is random, i. e. the covariance matrix of the initial

perturbations is I,  then the expected ratio of the ensemble mean variance at any time τ to the initial

variance is given by  Tr(GGT), where, as before, G = exp(Bτ) is the linear propagator matrix. By

definition, the quantity Tr(GGT) is simply the sum of the squared singular values of G.  In

contrast, the maximum amplification factor plotted in Fig. 8 is just the square of the largest singular

value.  If the covariance matrix of the initial perturbations is given by C0, then the expected

ensemble mean variance at time τ is Tr(GC0GT).

 In Fig. 9 we have plotted both the ensemble mean streamfunction variance for free linear

integrations of length τ from random initial conditions and initial conditions whose covariance

structure is identical to that obtained from solution of the FDR.   Both curves have been normalized

by the streamfunction variance of the initial perturbations.  The ensemble mean streamfunction

variance of the free linear integrations from random initial conditions falls off to about one half its

initial value in one day, indicating that although rapid growth is possible, it is not probable with

such an initial distribution.  Starting from initial conditions corresponding to solutions of the

stochastic model (4), the ensemble mean streamfunction variance decays somewhat more slowly,

reaching half its initial value around day 1.75.  Penland (1989) shows that the global error incurred

by neglecting the white noise forcing in the initial value problem is Tr(C0 -GC0GT), where C0  is

the modeled covariance matrix (found from the FDR, including stochastic forcing). The total error

variance associated with neglecting the stochastic forcing term  is also shown in Fig. 9.   Clearly,

the effect of the stochastic forcing rapidly becomes important, violating the assumption of free

linear evolution after one or two days.   In  other words, if one were to take realizations of our

stochastically forced model and make predictions by evolving those realizations freely using the

linear dynamical operator of the model, skill would significantly degraded by day 2 and all skill

would be lost by about 4 days.  This does not mean that stochastic forcing dominates the budget
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equation for eddy energy, or that energetic interactions with the mean flow are unimportant.  In fact

the opposite conclusion would be reached from such a budget calculation.  However, the stochastic

forcing does disrupt the eddy structures significantly, so that the evolution of perturbations cannot

be described by the linear dynamical operator G alone beyond 4 days.

We have also examined whether forecasts made by evolving observed patterns of high-

frequency streamfunction at 400 and 800 mb using the linear propagator matrix (G) of our model

have any useful skill.  Here we use pattern correlations as a measure of skill.  For the stochastic

model, using observed high-frequency data as initial conditions, it can be shown that the expected

pattern correlation as a function of forecast lead time is

    
r = (1 − Tr(C0 − GC0G

T)
Tr(C0)

)1 / 2,  (17)

where C0 is the covariance matrix of observed high-frequency streamfunction.  To derive this

expression, one must make use of the fact that, for the stochastic model, the forecasts and the

forecast errors are uncorrelated.  Fig. 10 shows r as a function of forecast lead time for the

stochastic model, along with rper = Tr(GC0)/Tr(C0) (the expected pattern correlation for a

persistence forecast) and rMRF (the pattern correlation for the current T126 global spectral model

used for medium-range forecasting at NCEP).  To compute rMRF we use 88 forecasts of 250 mb

high-frequency streamfunction verifying during DJF 1995/96.    The MRF forecast dataset at our

disposal contains forecasts sampled twice daily out to seven days.  Since the time series for each

forecast contains only 15 points, we were forced to use a much simpler and more compact high-

pass filter; deviations from running ten point means.  Given that  (1) this high pass filter is

different from what was used to construct C0  in (17),  (2) we are using a different pressure level

(250 mb instead of 400 and 800 mb), and (3) only 88 forecasts from one winter are used, the

comparison between the two models can be interpreted in very general terms.  Fig 10 shows that

the stochastic storm track model outperforms persistence by a wide margin at all forecast ranges,

and appears to have skill comparable to operational forecast models for forecast ranges of less than

three days.  This suggests that complex nonlinearities and physical processes represented in
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operational forecast models may do not contribute very much to the general skill of short-range

forecasts of high-frequency, synoptic scale weather systems.  However, given the caveats just

mentioned, a more precise comparison is clearly warranted.

4.  Simulation of annual and interannual variations of the storm tracks.

In the previous section we established that the stochastic model is capable of simulating many

important features of the observed climatological storm tracks, including the geographical

distribution of variance, lag covariance, and fluxes of heat and momentum.  To be useful as a

parameterization of the effects of synoptic eddies, the model must also be able to predict what

changes in these eddies are associated with specified low-frequency changes in the background

flow.  To test the utility of our model in this regard, we have examined the sensitivity of the

simulated storm tracks to mean flow changes associated with the observed annual cycle, as well as

observed interannual variability.

4.1  Modeling the annual cycle of the storm tracks.

Nakamura (1992) examined the annual evolution of the Northern Hemisphere storm tracks

during the six month cold season (October through April).  He found that although the Pacific is

strongest in January,  the Pacific storm track actually is weaker in January than in November and

April. Thus, the Pacific storm track is weaker than the Atlantic storm track in January, even though

the Pacific jet itself is consistently stronger than the Atlantic jet.  In addition,  the relative

amplitudes of the Pacific and Atlantic storm tracks in mid-winter is opposite to what one would

expect from simple indices of baroclinic growth potential (which are typically linearly related to the

vertical shear of the basic flow). To see if our model can reproduce these aspect of the seasonal

cycle, we have solved the FDR using January and April mean states.   The parameter ε is set so

that the maximum eddy kinetic energy at 400 mb matches observations in each case.
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Fig. 11 shows the observed and simulated eddy kinetic energies for both cases.  The model

appears able to capture some important aspects of the seasonal cycle of the storm tracks.  As

observed, the simulated Pacific storm track is weaker than the Atlantic storm track in January, and

stronger than the Atlantic storm track in April.  However, if equal forcing amplitudes (i.e identical

ε) were used in both cases, the model would not produce a Pacific storm track that is weaker in

January than April.  Thus, the model does not capture the mid-winter minimum in the Pacific storm

track, but it is able to simulate changes in the relative amplitudes of the Pacific and Atlantic storm

tracks during the seasonal cycle.  The model also captures the observed tendency for the

downstream end of the Atlantic storm track and the upstream end of the Pacific storm track to be

more connected in April than January, associated with enhanced propagation of eddy activity over

Northern Europe and Asia.

4.2.  Modeling storm track shifts associated with interannual variability in observed stationary

waves.

Extratropical stationary wave anomalies often associated with El-Nino/Southern Oscillation

(ENSO) are known to be associated with significant changes in the storm tracks (Lau 1988).  In

addition, anomalous eddy transports of heat and momentum associated with these storm track

shifts are a important factor in maintaining those stationary wave anomalies (Kok and Opsteegh

1985, Held et al 1989, Hoerling and Ting 1994).  In this section we examine whether the

stochastic model can reproduce the  storm track shifts associated with stationary wave anomalies

observed during the 13 winters period beginning December 1985.

It is important to recall from the discussion in section 1 that the averaging period used here (90

days) may be too short to insure that all (or even most) of the observed storm track anomalies are

directly linked to stationary wave anomalies.  For instance, one or two extreme cases of

cyclogenesis may significantly affect the 90 day mean high frequency eddy kinetic energy, but may

be considered random events not linked to the large scale flow pattern in a statistically significant
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way.  Conversely, a single large-scale  flow anomaly, such as a block, that persists for only one or

two weeks (or two or three synoptic eddy lifetimes) may significantly affect the seasonal mean

flow, but may not necessarily have a corresponding impact on the seasonally averaged high-

frequency eddy statistics. Therefore, the stochastic model should not be expected to reproduce the

observed storm track anomalies exactly.  In fact, if the stochastic model were "perfect", in the

sense that it could exactly reproduce the observed long-term statistics of high-frequency eddies,

one would expect it to extract only the predictable, or statistically significant, signal associated with

a given stationary wave anomaly.

We have solved the FDR (7a) for each of the 13 observed DJF mean basic states, but now

using a flow-dependent linear damping in D  in (4) which reduces the growth rate of the most

unstable eigenmode for each winter to -1/20 days-1.  The reason for this choice of damping will be

discussed in detail in section 5b.  Briefly, the growth rate for the most unstable eigenmode for each

DJF mean basic state ranges from 0.0394 days-1 (for DJF 1985/86) to 0.0966 days-1 (for DJF

1993/94).  It was found that the TrC0  is quite sensitive to the extra damping included in D  only

when that damping is very close to the e-folding time of the most unstable mode (see Fig. 16).

Therefore, using a fixed D  of 1/10 days-1 for all cases resulted in a very large amplitude storm

tracks for the DJF 1993/94 basic state (for which the e-folding time of the most unstable mode is

close to 10 days). We chose a flow dependent D  to avoid this nearly resonant behavior.  We could

have circumvented this by repeating all the calculations with a stronger α, say α = 1/5 days-1, but

then we would have had to justify such a strong value.

Even if sampling considerations prevent us from using the storm track model to simulate

storm track anomalies for individual seasons, one should expect the model to be able to simulate

the statistics of the interannual variability of the storm tracks.  Fig. 12 shows the observed and

simulated standard deviation of the 13 400 mb high-frequency streamfunction variance maps for

the 13 winters.  The largest interannual variability is near the downstream end of the storm tracks

in both models and observations, although the simulated interannual variability is somewhat

stronger than observed in the Pacific basin.    This suggests that, on average, the model possesses
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some skill in simulating the sensitivity of the storm tracks to observed interannual stationary wave

variability.  We find this quite encouraging, given the extreme simplicity of the model.

The results of the 13 calculations are summarized in Table 1.  Anomalies of high-frequency

streamfunction variance for the observations (simulations) are computed relative to the observed

(simulated) 13 winter mean.  Both the observed and simulated variance anomalies are smoothed to

T12 resolution, since the unsmoothed observed fields were quite noisy.  The average of the 13

simulated variance maps is nearly identical to that computed from the 13 winter mean basic state

(Fig. 1b).  The average anomaly correlation for the 13 pairs of simulated and observed anomaly

variance maps is 0.3, indicating that perhaps 1) there are significant systematic errors in the storm

track model, and/or 2)  a large fraction of the anomalous high frequency eddy variance on seasonal

time scales is not directly linked to the seasonal mean anomalous stationary wave pattern.

Determining the relative importance of these two explanations is difficult with observations, but a

large ensemble of general circulation model (GCM) simulations with fixed boundary conditions but

different initial conditions could be used to address this question.  The ensemble mean storm tracks

would then be unambiguously related to the ensemble mean anomalous stationary wave pattern for

a given 90 day period, if the sample size were large enough.  This is a topic of ongoing research.

Fig. 13 shows the observed and simulated anomalous storm tracks for three cases, one with

the best anomaly correlation (top), one with the worst (middle), and an ENSO case (bottom).  In

the best case (DJF 1994/95), the model appears able to capture virtually every detail of the

observed storm track anomalies.  Conversely, in the worst case (DJF 1984/85) the model clearly

has no skill.  The ability of the model to correctly simulate the storm track anomalies in some

winters and not others could be related to regime-dependent systematic errors in the model, or

could be due to simply to chance.  For example, in the hypothetical GCM ensemble integration

mentioned above, in some cases one individual member of the ensemble could be very close to the

ensemble mean, so that the statistically significant signal would appear to be manifested in one

realization.  Another possibility is that there is something about the DJF mean flow for 1994/95
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that "locks" in the storm tracks, so that they are very strongly constrained by the anomalous

stationary waves.

The DJF 1982/83 case has been included since observed stationary wave anomalies during

this extreme ENSO event have been well documented (see e. g. Hoerling and Ting 1994, Fig. 4a).

The dominant features of the observed storm track anomalies are the southward shift and eastward

extension of the Pacific storm track, and the northward shift in the Atlantic storm track.  These

shifts are consistent with the observed southward and eastward extension of the Pacific jet and the

northward shift of the Atlantic jet.  The latter feature is associated with the particular phase of the

North Atlantic Oscillation (NAO) that was persistent during that winter, and is unlikely to be

directly related to ENSO.   The stochastic model is able to capture the observed northward shift of

the Atlantic storm track quite well.  In the Pacific basin, the model does produce an eastward shift

of the Pacific storm track, although the region of negative anomalous streamfunction variance in

the Gulf of Alaska is weaker than observed.    Qualitatively, the model appears able to capture the

dominant storm track signal associated with ENSO, at least in some cases.

5.  Sensitivity.

5.1  Sensitivity to the choice of norm.

As was mentioned in section 2, even if one specifies the stochastic forcing to be incoherent in

space, one has to specify in what space it is so. In general,  the solution of (7a) is will depend

upon the norm in which it is solved.  To explore this dependence, we have solved the FDR for the

13 winter mean DJF basic state in three norms, streamfunction, kinetic energy and vorticity. The

scaling constant ε is chosen so that the maximum eddy kinetic energy matches observations in each

case. The state variable in the kinetic energy norm is    n(n + 1)
4

n(n + 1)
4ψ j , where   ψ j  are the spherical

harmonic coefficients of   ψ j
'  and n is the total wavenumber.  With this choice of state variable, the

trace of the covariance matrix is the volume integrated perturbation kinetic energy,
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The 400 mb eddy kinetic energy maps calculated by assuming Q = εI in the kinetic energy and

vorticity norms are shown in Fig. 14.  The solution in the streamfunction norm was shown in Fig.

2b.  The gross features of the solution in the vorticity norm are similar to the other two norms, but

there are significant differences.  These differences appear larger when comparing streamfunction

variance.  These differences arise mainly because, relative to the streamfunction norm, solution of

the FDR with Q = εI in the vorticity norm forces the larger scales (small n) much more strongly.

Thus, the solution to the stochastically forced problem is dominated by planetary-scale, low-

frequency disturbances. On the other hand, as is clear from comparing Fig. 2b with Fig. 14a, we

see that the solutions are nearly identical in the kinetic energy and streamfunction norms.  In fact,

the solution of the FDR appears to be remarkably insensitive to the norm chosen, as long as the

largest spatial scales are not forced too strongly relative the synoptic scales of interest here.

One can also infer Q  given an observed C0, this has been referred to as a "backward"

application of the FDR (NSP).  The Q thus computed is guaranteed to be symmetric, but not

positive definite, so it may need to be truncated to retain only the positive definite part (Penland and

Matrosova 1994).    We have computed a truncated positive definite Q using observed covariances

of high-pass filtered streamfunction at 400 and 800 mb.  Fig. 15a shows the diagonal elements of

this Q, displayed in grid space. There is some geographical coherence to the forcing, particularly

over North America.  However, if we use this forcing to solve the forward FDR the C0  produced

(Fig. 15b) is not that much different than the solution computed with Q = εI in the streamfunction

norm (Fig. 1b)2.  The Atlantic storm track is somewhat stronger than the Pacific storm track, in

accordance with observations, when the geographically coherent Q is used.  This is consistent with

the region of concentrated forcing over North America, just upstream of the Atlantic storm track

(Fig. 15a).  Overall, we find it remarkable that the simple model (4) is able to produce such

2The C0  computed using the Q from the backward FDR is not identical to the observed C0 , because of the
truncation that was necessary to make Q positive definite.
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realistic storm tracks when no observations are used in the specification of Q, other than the single

amplitude scale factor ε.

5.2 Sensitivity to D.

 The damping operator D  = -αI  must be large enough to insure that B is stable.  In the limit

  α → ∞ , B  is a diagonal matrix with diagonal elements -α, so that the FDR then yields

    C0 = I / 2α  (NSP).  Conversely, when    α → −λr
max , where    λr

max  is the growth rate of the least

damped mode of B, the resulting eddy statistics tend to be dominated by a structure nearly identical

to that of the least damped mode of B.  This can be understood by noting that the solving the FDR

(7) for C0 yields

     
H ij = −

εE−1(E− 1)T *

ij

λi + λ j
* and C0 = EHET *, (18)

where E is the matrix with the eigenvectors of B  (or L, since the addition of a linear damping

does not change the eigenvectors) as columns, and λ are the eigenvalues of B  (Penland and

Sardeshmukh 1995).  If B were normal, the eigenvector matrix E  would be orthogonal, and the

trace of the covariance matrix would be inversely proportional to the (real) eigenvalues. Therefore,

the variance would be dominated by the least damped mode.  Since B is nonnormal in this case,

this variance need not be dominated by the least damped mode, but in practice, when the damping

parameter α is such that B is near resonance, the least damped mode does indeed dominate (i. e.

the leading EOF of C0 explains nearly all of the variance, and its structure is nearly identical to the

least damped mode of B).

Fig. 16 summarizes the sensitivity of the solution to the damping parameter α. As expected

from equation (12), when the most unstable mode is only weakly damped (    α → −λr
max ), the

variance of the solution (as measured by TrC0) is very large.  In this limit, the leading two EOFs
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of C0, which combine to represent a single oscillatory structure almost identical to that of the least

damped eigenmode, explain a very large fraction of the total variance.  As the time scale for decay

of the least damped mode is decreased, the fraction of variance explained by the leading EOF is

reduced, so that for damping rates less that 15 days, the leading EOF explains less that ten percent

of the variance.  Therefore, unless α is defined such that the least damped mode of B is nearly

neutral, the least damped mode has no special significance.

Maps of the diagonal elements of C0, displayed in grid space, show some sensitivity to the

value of α chosen.  For small α, the maps essentially show the amplitude pattern of the least

damped mode, which happens to be somewhat higher  in the Atlantic storm track, relative to the

Pacific storm track.  Since the structure of the most unstable (or least damped) mode can be quite

sensitive to small variations in model parameters, basic state and resolution (see e. g. Borges and

Sardeshmukh 1995) it seems sensible to choose an α  large enough so that no single structure

dominates the solution.  For α between 1/20 days-1  and 1/5 days-1 the gross characteristics of the

solution are quite similar.   However, there is a tendency for the variance to become more localized

in the region of strongest temperature gradients as α  is increased.   Qualitatively, this means that

the simulated Pacific storm track becomes stronger relative to the Atlantic storm track as α is

increased.  When the damping is strong, the solution essentially becomes a local balance between

stochastic forcing and dissipation, with very little propagation away from the source regions. We

have chose a value of α  = 1/10 days-1 (corresponding to a decay time scale of 18 days for the least

damped mode) between the two extremes

6.  Discussion and conclusions.

In this paper we have attempted to explain the observed structure of the Northern

hemisphere wintertime synoptic-scale variability, given the structure of the planetary scale

background flow. We have used an extremely simple dynamical model for this purpose. We

conjecture that synoptic eddy evolution, on average, can be viewed as stochastically forced
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disturbances evolving on a baroclinically stable background flow, so that the eddy statistics are

identical to those of the multivariate first-order linear Markov process (4). We then use well known

results from the extensively developed theory of Markov processes to determine those statistics

through (7).

To keep the theory simple and as free as possible of arbitrary adjustable parameters, the

deterministic part B of the Markov process is specified to be a linearized two-level quasi-

geostrophic model L of extratropical synoptic eddies plus a uniform damping D = -α I.  The two-

level QG model was chosen because it is the simplest model incorporating the basic baroclinic

dynamics of extratropical synoptic eddy development; and the uniform damping D because it

represents the simplest possible accounting of nonlinear saturation effects. The stochastic forcing

part of the Markov model is kept simple by specifying it as geographically incoherent white noise

with covariance Q = ε I.  Our Markov model (4) is thus completely defined by the nondivergent

part of the background flow at two levels (400 and 800 mb), three 'standard' model damping

parameters (representing low-level Rayleigh damping, mid-tropospheric thermal damping, and

biharmonic diffusion), one static stability parameter, plus α and ε. The value of α actually

specified in most of the calculations (1/10 days-1) is small enough  to be within the range of

uncertainty of the 'standard' model damping parameters, so α need not necessarily be viewed as an

additional parameter. Although we did not explore this, we could conceivably have obtained

similar results by setting α to zero and making minor adjustments to the other damping parameters.

In that case, B would have been identical to L, and the only extra parameter needed to define our

Markov model would have been ε. This parameter is essentially a scaling constant, chosen to

match observed amplitudes with simulated amplitudes given by a linear theory. It has have no

effect on the predicted patterns.

It is important to recognize that (4) is only one out of an infinite number of first-order linear

Markov models applicable to this problem. In particular, we did not determine the dynamical

operator B empirically, as done for example by Penland and Sardeshmukh (1995) and DelSole

(1996). These authors determined B  as the solution of (6) with specified observed (or model
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generated) covariances C0  and Cτ. We also did not determine D  (and therefore B) by actually

regressing observed nonlinear and forcing terms against x  in (3). It is possible that B obtained

through either of these approaches could give better results than shown here. However, for an N-

dimensional Markov process, we would then have N2 model parameters contained in B, instead of

the 2 + 4 + N (needed to describe the background flow) of our model, and so the "explaining

power" of such an empirical model would be correspondingly smaller. Another very important

reason for choosing  B = L -αI  is that the eigenstructures of B and L are the same, and so the

deterministic dynamics B of our model are the well understood quasi-geostrophic dynamics of

synoptic eddies. The only difference is that the eddies are now damped.

Despite these drastic simplifications, our model peforms remarkably well. It simulates all

the major features of the wintertime climatological storm tracks, such as the geographical

distributions and intensities of the eddy variances, lagged covariances, kinetic energy, and vorticity

and heat fluxes (Figs 1-5). Furthermore, it simulates not only the aggregate statistical structure of

the eddies as revealed by these measures, but also the statistical structure of the eddies themselves

in the Pacific and Atlantic storm tracks (Figs 6-7). Indeed, (4) used as a forecast model for the

individual observed eddies easily outperformed a persistence forecast model, and had comparable

skill to that of the operational NCEP forecast model for forecast ranges of up to 2 days (Fig 10).

The model is also able to simulate correctly the change in the relative strengths of the Pacific and

Atlantic storm tracks from January to April (Fig 11), and is able to capture much of the interannual

variability of the wintertime storm tracks (Fig 12). We stress again that it is able to do all this given

only the planetary scale background flow plus a few damping and scaling parameters. The results

are rather insensitive to the precise values of these parameters, so long as α was not such that the

least damped mode of B  is almost neutral (Fig 16). The results are also rather insensitive to the

specification of the space in which the stochastic forcing was assumed to be white, so long as it did

not excite the largest planetary scales of the flow much more strongly than other scales.

Even a cursory comparison of Figs 1a and 1b immediately suggests the power of this

simple theory. The idea that synoptic eddies behave on average as stochastically forced eddies
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evolving on a baroclinically stable background flow clearly goes a long way towards explaining the

general structure of observed storm tracks. In our theory the eddies are being forced uniformly

everywhere on the hemisphere, on all scales; the reason they grow near the Pacific and Atlantic jets

into recognizable weather systems is that they can efficiently draw upon the potential (and to a

lesser extent, the kinetic) energy available in those jets (Fig 8). No exponential instability need be

invoked. This is entirely consistent with the view of Farrell (1989). The energy balance in our

model is between the stochastic forcing and baroclinic and barotropic energy extraction from the

sheared flow on the one hand, and eddy dissipation on the other. As suggested by Fig 1, of the

three energy sources available to the eddies, they draw most heavily upon the available potential

energy source. The stochastic source is of secondary importance.

It is interesting to contrast our results with those of DelSole (1996). Using a Markov

model,  he attempted to model the synoptic eddy variability simulated in a two-layer nonlinear

quasi-geostrophic channel model, with zonally symmetric forcing and boundary conditions, with

mixed results. Given that he was only attempting to explain the variability of a 2-layer model, and

not of the observed atmosphere as we have done, his aim was less ambitious, and therefore his

relative lack of sucess is all the more puzzling. One possible explanation is that we considered a

zonally varying background state, and he did not. Eddies growing in our modelcan leave the

baroclinically active regions and decay by barotropic processes, as shown in Figs 6 and 7.  In

DelSole's model, eddies grow on a zonally symmetric basic state and are confined to a re-entrant

channel, and hence never enter a region unfavorable for eddy growth. Nonlinear processes may

then be considerably more important in halting the growth of eddies in his model. Another

difference is that DelSole was trying to explain variability on all timescales in his model, not just

high-frequency synoptic-scale variability.  It is noteworthy that NSP tried, but failed,  to explain

observed low-frequency variability in a stochastically forced linear barotropic model using methods

similar to that described here.  This indicates that one fundamental difference between observed

low and high frequency variability is that the details of the forcing are very important in explaining

the former, while energetic interaction with the background flow is the dominant process
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controlling the dynamics of the latter.  In other words, the relative importance of processes

incorporated in B  versus Q is opposite for the two types of variability.

It is also interesting to contrast our analysis with that of Branstator (1995). He sought to

explain the storm tracks simulated in a model - this time a multi-level GCM run in perpetual

January conditions - with a linear storm track  model. His results are just as striking as ours, in

many respects. His L  operator, in the terminology of our equation (1), is the GCM linearized

about its long-term mean state, and his prescription for C0, given this L, is simply C0 = εb

exp(Lτb)exp(LTτb), where τb is a time-truncation parameter and εb, like our ε, is a scaling

constant. This is essentially the (non-stationary) covariance of x  that one would obtain at time  t =

τb from an ensemble of integrations performed with (1), without the nonlinear and forcing terms,

with initial covariance εbI.  Indeed this is how Branstator actually determines C0 . Note that he did

not have a prescription for the lag covariances Cτ, and therefore no prescription for the eddy

power spectra.

Branstator's prescription for C0 given L  is thus different from ours (eq. (7)). However,

even though it worked just as well in many respects, his prescription does not, in our view,

amount to a complete and self-consistent theory of the eddy statistics. The basic difficulty is that

his model is not statistically stationary, since he fixes on the evolving covariance at an arbitrary

time t = τb.   As is shown in the paper, the eddy statistics are sensitive to the choice of τb.  The

damping parameter α can be considered to be the analagous free parameter in our model, but it

plays a much less important role. As shown in Fig 16, our results were insensitive to its precise

value so long as it was not such as to render B very nearly neutral.  One might also question

Branstator's specification of the 'initial' covariance being white in a certain norm. Our specification

of Q   as white in the streamfunction norm is also somewhat arbitrary,  but we show in Figs 14-15

that our results are not crucially dependent upon this choice, as long as Q does not preferentially

excite the largest scales in the model.  We suspect the same holds true for the specificaton of the

norm in Branstator's model.
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Our model has some notable deficiences. It does not simulate the northeastward extension

of the wintertime Pacific storm track into North America (Fig. 1). In general it produces too

strongly tilted eddies in the Pacific and Atlantic storm tracks (Figs 6-7), and thus too strong

vorticity fluxes (Fig 3). It also does not capture the mid-winter minimum of the Pacific storm track.

And finally, although it is able to simulate the anomalous storm tracks of some individual winters

(such as DJF 1994/95; see Fig 13), its general skill was poor in this regard (Table 1).

Some of these failures, especially the poor simulation of the eastern edge of both the

climatological Pacific storm track (Fig 1) and its interannual variability (Fig 13), can perhaps be

attributed to the simplicity of the two-level quasi-geostrophic L operator. The inability of the model

to capture the Pacific mid-winter minimum may also reflect inadequacies of L. It would certainly

be worthwhile to repeat these calculations with a multi-level primitive-equation model to see if

these defiencies were remedied.

Our model, however, does not consist just of L, but also D and Q, and low-frequency

variations of the storm tracks may also be associated with low-frequency variability of D and Q.

We have stressed that their detailed specification is secondary, and they may in fact be

characterized by two single numbers, α  and ε.  Allowing more complicated prescriptions for D

and Q could potentially lead to better simulations of annual and interannual variability of the storm

tracks, however,  lacking any theoretical guidance in this direction, we prefer to leave D and Q  as

simple as possible.  In section 4.2,  we allowed α  to be flow dependent in an attempt to simulate

interannual variability of the storm tracks.  This was done to avoid the resonant behavior of the

FDR when B is almost exactly neutral.  We could have circumvented this problem by choosing a

larger α, say 1/5 days-1, but then we would have to justify such a large value.  Instead, we chose

α  such that the least damped mode of B always decayed with a time scale of 20 days.  Even so, α

was always small (at most 1/7 days-1) and within the range of uncertainty of the other model

damping parameters.  More importantly, the simulated interannual variations of the storm tracks

(Figs. 12 and 13) is clearly associated mainly with variations in L, not D or Q.
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It is remarkable that the model (7) can capture so much of the interannual variability of the

storm tracks by invoking only the interannual changes of B but not of Q, i.e. by assuming that the

symmetric part of BC0 remains the same from year to year. This suggests an adjustment between

the mean flow (represented by B) and the synoptic eddy statistics (represented by C0) on

interannual time scales, which could be viewed as perhaps the broadest possible manifestation of

an 'index cycle' in the atmosphere. Nevertheless, the simulation in Fig 13 is clearly far from

perfect, and the poor correlations in Table 1 further drive home the point that there is more to the

interannual variability of storm tracks than a simple generalized index cycle. Perhaps the variations

of Q, which certainly exist, cannot be ignored at all, even in the simplest theory. As suggested by

Fig 11, specifying some variation of Q would help us simulate the Pacific mid-winter minimum

better. We have not pursued such variations further here because we do not have any dynamical

theory of them.

Notwithstanding the caveats concerning the simplicity of our B operator and the simplicity

and constancy of our Q operator, we believe, for reasons discussed in section 1, that the failure of

our model to simulate the anomalous storm tracks for individual winters points to a more

fundamental problem: that a significant part of the interannual variability of seasonal-mean storm

tracks is not parameterizable in terms of seasonal-mean flow anomalies. To that extent, we believe

that repeating our calculations with a bigger and better L operators could lead to diminishing

returns, given the reasonably good results already reported here.

In summary, we have presented a simple theory of extratropical storm tracks in which the

storm tracks are shown to arise from stochastically forced disturbances reaching relatively large

amplitudes in certain preferred regions of the atmosphere through stable energy interactions with

the local background flow. The theory successfully explains many observed aspects of the

climatological wintertime Pacific and Atlantic storm tracks. It is also successful in explaining some

aspects of their annual cycle and interannual variability. It can sometimes also predict the

anomalous storm tracks during individual seasons; its general ability is however poor in this

regard. This failure could be viewed as exposing the inadequacies of the theory. Alternatively, it
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could be viewed as highlighting the existence of a portion of the seasonal-mean storm track

variability that is unrelated to that of the seasonal-mean flow, and therefore unparameterizable in

terms of the seasonal-mean flow.
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Figure Captions

Figure 1:  Observed (a) and simulated ((b), (c) and (d)) DJF mean 400 mb high-frequency

streamfunction variance.  In  (b), the full DJF basic state is used.  In (c), only the barotropic part of

the DJF mean winds are included, while in (d) only the zonally symmetric part of the barotropic

winds are included.  Contour interval 1 x 1013 m4s-2 in (a) and (b), 1.125 x 1012 m4s-2 in (c) and

(d). Values greater than 6 x 1013 m4s-2 (6.75 x 1012 m4s-2) are shaded in (a) and (b) ((c) and (d)).

In this and all following polar stereographic plots, the outermost latitude is 10oN.

Figure 2: Observed (a) and simulated (b) DJF mean 400 mb high-frequency kinetic energy.

Contour interval 15 m2s-2. Values greater than 90 m2s-2 shaded.

Figure 3:  Observed (a) and simulated (b) 400 mb streamfunction tendency associated with high-

frequency eddy vorticity fluxes.  See text for details of computational procedure.  Contour interval

3 m2s-2 in (a) and 6 m2s-2 in (b). Values less than -3 m2s-2 are shaded in (a), -6 m2s-2 in (b).

Figure 4:  Observed (a) and simulated (b) 400 mb streamfunction tendency associated with high-

frequency eddy heat fluxes.  See text for details of computational procedure.  Contour interval 3

m2s-2 in (a), values less than -3 m2s-2 are shaded.

Figure 5:  Observed (a) and simulated (b) 1.5 day lag covariance of DJF mean high-frequency

streamfunction.  Contour interval 1 x 1013 m4s-2, values less than -1 x 1013 m4s-2 shaded.

Figure 6:  Observed (left) and simulated (right) one-point lag correlation maps for a base point at

38.966o N, 172.5o W. Contour interval 0.1. Values less than -0.1 are shaded.
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Figure 7:  Observed (left) and simulated (right) one-point lag correlation maps for a base point at

46.3886o N, 63.75o E. Contour interval 0.1.

Figure 8:  Maximum amplification (MA) curve for DJF basic state, together with the evolution of

selected optimal perturbations   Curves are labeled with optimization time in days.  Amplification

factor refers to increase in total rotational kinetic energy.  Extra damping included in D operator is

1/10 days-1.

Figure 9: Curve with solid circles (triangles) shows normalized ensemble mean streamfunction

variance for unforced linear integrations starting from simulated (random) initial conditions.  Curve

with solid squares shows normalized total error variance for unforced linear integrations neglecting

stochastic forcing.

Figure 10:  Curve with solid circles shows pattern correlation as a function of forecast time for

unforced linear integrations starting from observed high-frequency streamfunction at 400 and 800

mb.  Curve with solid squares shows pattern correlation for a persistence forecast.  For reference,

the pattern correlation for 88 forecast (during DJF 1995/96) of 250 mb high frequency

streamfunction by the operational T126 global spectral model used at NCEP are shown with open

circles.   See text for details.

Figure 11:  Observed (left) and simulated (right) monthly mean 400 mb high frequency rotational

kinetic energy for January (top) and April (bottom).  Contour interval 15 m2s-2, with values greater

than 105 m2s-2 are shaded.

Figure 12:  Observed (a) and simulated (b) standard deviation of DJF mean 400 mb high frequency

streamfunction variance for 13 winters (DJF 1982/83 to 1994/95).  Individual winter means were
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truncated to T12 resolution before standard deviation was computed.  Contour interval is 2 x 1012

m4 s-2, values greater than 1.2 x 1013 m4 s-2 are shaded.

Figure 13:  Observed (left) and simulated (right) anomalous DJF mean 400 mb high-frequency

streamfunction variance for three selected winters.  Fields are truncated to T12 resolution.  Contour

interval is 3 x 1012 m4s-2, values less than -3 x 1012 m4s-2 are shaded.  Anomalies are computed

relative to 13 winter mean (DJF 1982/83 to 1994/95).  Anomaly correlation (AC) between

observed and simulated fields is indicated.

Figure 14:  Simulated DJF mean 400 mb high-frequency rotational kinetic energy computed from

FDR with stochastic forcing that is white in both space and time in (a) the kinetic energy and (b)

the vorticity norms. Contour interval 15 m2s-2. Values greater than 90 m2s-2 shaded.

Figure 15:  (a) Map of stochastic forcing variance at 400 mb  (the diagonal elements of Q displayed

in grid space).  Q computed using observed streamfunction covariance matrix (C0 ) via the

backward FDR, and truncated to be positive definite.   Contour interval 1200 m2s-2, values greater

than 6200 m-2s-2 shaded (b) Streamfunction variance calculated from solution of the FDR using

this Q.  Contour interval 1 x 1013 m4s-2, values greater than 6 x 1012 m4s-2 shaded.

Figure 16:  Tr(C0) (solid circles) and leading eigenvalue of C0 (solid squares) as a function of

damping time scale of the D operator. Leading eigenvalue of the covariance matrix expressed as

percent variance explained by the first eigenvector.  C0   is calculated by the solving the FDR (7a)

with the scaling parameter e chosen so that TrQ = I.
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Table Captions

Table 1:  Summary of results of calculations for individual winter seasons.  AC is correlation

between observed and simulated T12 anomalous high-frequency 400 mb streamfunction variance.

Anomalies are computed related to the 13 winter mean.  Extra damping included in D operator for

each DJF mean basic state is such that the least damped eigenmode of B is damped with an e-

folding time scale of 20 days.  See text for further details.



Figure 1: Observed (a) and simulated ((b),(c) and (d)) DJF mean 400 mb high-frequency
streamfunction variance. In (b), the full DJF basic state is used. In (c), only the barotropic
part of the DJF mean winds are included, while in (d) only the zonally symmetric part of
the barotropic winds are included. Contour interval 1 � 1013 m4 s�2 in (a) and (b), 1.125
� 1013 m4 s�2 in (c) and (d). Values greater than 6 � 1013 m4 s�2 (6.75 � 1012 m4 s�2) are
shaded in (a) and (b) ((c) and (d)). In this and all following polar stereographic plots, the
outermost latitude is 10oN.



Figure 2: Observed (a) and simulated (b) DJF mean 400 mb high-frequency rotational
kinetic energy. Contour interval 15 m2 s�2. Values greater than 90 m2 s�2 shaded.



Figure 3: Observed (a) and simulated (b) DJF mean 400 mb streamfunction tendency
associated with high-frequency eddy vorticity uxes. See text for details of computational
procedure. Contour interval 3 m2 s�2 in (a) and 6 m2 s�2 in (b). Values less than -3 m2 s�2

shaded in (a), -6 m2 s�2 in (b).



Figure 4: Observed (a) and simulated (b) DJF mean 400 mb streamfunction tendency asso-
ciated with high-frequency eddy heat uxes. See text for details of computational procedure.
Contour interval 3 m2 s�2, values less than -3 m2 s�2 shaded.



Figure 5: Observed (a) and simulated (b) 1.5 day lag covariance of DJF mean 400 mb
high-frequency streamfunction. Contour interval 1 � 1013 m4 s�2, values less than -1 � 1013

m4 s�2 shaded.



Figure 6: Observed (left) and simulated (right) one-point lag correlation maps for a base
point at 38.966 oN, 172.5 oW. Contour interval is 0.1. Values less than -0.1 are shaded.



Figure 7: Observed (left) and simulated (right) one-point lag correlation maps for a base
point at 46.3886 oN, 63.75 oE. Contour interval is 0.1. Values less than -0.1 are shaded.
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Figure 8: Maximum ampli�cation (MA) curve for DJF basic state, together with the
evolution of selected optimal perturbations. Curves are labelled with optimization time in
days. Ampli�cation factor refers to increase in total rotational kinetic energy. Extra damping
included in D operator is 1/10 days�1.
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Figure 9: Curve with solid circles (triangles) shows normalized ensemble mean stream-
function variance for unforced linear integrations starting from observed (random) initial
conditions. Curve with solid squares shows normalized error variance for unforced linear
integrations neglecting stochastic forcing. See text for details.
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Figure 10: Curve with solid circles shows anomaly correlation (AC) as a function of forecast
time for unforced linear integrations starting from observed high-frequency streamfunction at
400 and 800 mb. Curve with solid squares shows AC for a persistence forecast. For reference,
the AC for 88 forecasts (during DJF 1995/96) of 250 mb high-frequency streamfunction by
the operational T126 global spectral model used at NCEP are shown with open circles.



Figure 11: Observed (left) and simulated (right) monthly mean 400 mb high-frequency
rotational kinetic energy for January (top) and April (bottom). Contour interval 15 m2 s�2,
with values greater than 105 m2 s�2 shaded.



Figure 12: Observed (A) and simulated (B) standard deviation of DJF mean 400 mb high-
frequency streamfunction variance for 13 winters (DJF 1982/83 to 1994/95). Individual
winter means were truncated to T12 resolution before standard deviation was computed.
Contour interval is 2 � 1012 m4 s�2, values greater than 1.2 � 1013 m4 s�2 are shaded.



Figure 13: Observed (left) and simulated (right) anomalous DJF mean 400 mb high-frequency streamfunc-
tion variance for three selected winters. Fields are truncated to T12 resolution. Contour interval is 3 �
1012 m4 s�2, values less than -3 � 1012 m4 s�2 are shaded. Anomalies are computed relative to 13 winter
mean (DJF 1982/83 to 1994/95). Pattern correlation between observed and simulated anomalies (AC) is
indicated.



Figure 14: Simulated DJF mean 400 mb high-frequency rotational kinetic energy computed
from the FDR with stochastic forcing that is white in both space and time in (a) the rota-
tional kinetic energy norm and (b) the vorticity norm. Contour interval 15 m2 s�2, values
greater than 90 m2 s�2 are shaded.



Figure 15: (a) Map of stochastic forcing variance at 400 mb. Stochastic forcing computed
from for forward FDR (equation (7)), using observed high-frequency streamfunction covari-
ance matrix. Contour interval 1200 m4 s�4, values greater than 6200 m4 s�4 are shaded. (b)
Simulated 400 mb high-frequency streamfunction variance from solution of the FDR using
forcing covariance matrix shown in (a). Contour interval is 1 � 1013 m4 s�2, values greater
than 6 � 1013 m4 s�2 are shaded.
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Figure 16: Trace of C0 (solid circles) and leading eigenvalue of C0 (solid squares) as a func-
tion of damping time scale of the D operator. Leading eigenvalue of the covariance matrix
(C0) is expressed as percent variance explained by the �rst eigenvector. C0 is calculated by
solving the FDR (7a) with the scaling parameter � chosen so that TrQ = 1.



winter of AC

82/83 0.32

83/84 0.08

84/85 -0.25

85/86 -0.17

86/87 0.33

87/88 0.46

88/89 0.08

89/90 0.45

90/91 0.22

91/92 0.24

92/93 0.50

93/94 0.18

94/95 0.59

Table 1: Summary of results of calculations for individual winter seasons.  AC is pattern
correlation between observed and simulated T12 anomalous high-frequency 400 mb
streamfunction variance.  Anomalies are computed relative to 13 winter mean.  Extra damping
included in D operator for each DJF mean basic state is such that least damped eigenmode of
B is damped with an e-folding time scale of 20 days.   See text for further details.


